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Diffuse Curvature Computation for
Surface Recognition

J. M. Savignat, 0. Stab, A. Rassineux, and P. Villon

Abstract. Diffuse approximation is a local approximation scheme based
on a moving least square fit. Derivatives are estimated by a pseudo-
derivation operator which (under certain conditions) converges towards
the function derivatives. For this reason, we use it to compute curvature
over triangular surfaces as an extention of the fitting algorithm. We also
take triangle normals into account, which leads to a high quality curva-
ture estimator. We develop a surface recognition algorithm for triangular
surfaces based on this curvature computation on the one hand, and on
the topology described by the mesh on the other hand. Its application al-
lows us to treat successfully some real CAD models, implying that diffuse
approximation is a powerful tool for surface modelling, and for derivative-
based computations.

§1. Diffuse Approximation

We shall focus in this part on the 1D case because the extension to higher
dimensions only involves notational difficulties. Given a set of points (xi)iEI
in Q C R an open interval, with measures (Ui)iEI, we build locally an approxi-
mation of the underlying function u via an estimation of the Taylor expansion
of the function u. It should be noted that for any function u E Cm+l, the
Taylor expansion of order m exists at each point y,

- , X (k)~ (X Y) k fX(ty
U\ =LY4 U / -v! + ] 5 ( )! it (t) dt,

k=O

and that the polynomial part is an approximation of u near the point y.
The estimate uses some weight functions wi associated with each point

xi and locally supported around xi. We define I(x) = {i E I, wi (x) : 0} as
the set of indices of data points whose weight function is non-null at x. The
computation procedes by minimisation at a point y of the functional

S= Zwt(y(i) -

iEI
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with fti(x) = E ak(y)pk(x) and (py(x)) = (1, (x - y),..., ,. .). The
k=O

approximation ii of u and its derivatives are the coefficients ak: fi(y) = ao(y),
(x (y) = al(y), This approximation method was first proposed in [10], and

efficient computation was dicussed in [2].
The diffuse approximation properties depend mainly on the weight func-

tions wi. Their usual form is wi(x) = wref,-( ix-), where Wref is a reference

bell function with support (-1, 1), and pi is the influence radius of point xi.
We shall suppose that these radii are chosen so that the approximation exists
at any point x (i.e. Vx E Q, Card(I(x)) _> m). [3] and [4] presented a few
techniques to calculate such radii. With these definitions, the main properties
of fi are the following:

" ii has the same smoothness as Wref (e.g. if Wref C C2 , ii C C 2 ).

"* The approximation reproduces polynomial functions up to degree m.

"* i2 and the pseudo-derivatives 6 (k < m) converge to u and its derivatives
when the number of data points increases (see [16]).

"* The diffuse approximation is linear, and the shape functions defined by
fi(x) = E Ni(x)ui are local, supp(Ni) = supp(wi).

iEI(x)

§2. Hermite Approximation Scheme

We propose to also take differential data into account in the criterion 4y to
build a Hermite approximation scheme. Let (xj)j~j denote the set of points
at which some differential data vj = Dj(u)(xj) are known. We associate a
weight function wj with each point xj. The modified criterion is

gyj} = E-,Y(j(, , + E Ajwj(y)Ill j i(X) _ vjll2.
iEI(y) jEJ(y)

It is not restrictive to suppose that all the differential operators corre-
spond to the same operator D = Dt}L•E[1,n]. Then the vector {ck} is a solution
of the system

A(y){•a(y)} = {b(y)},

with

A(y) = PT(y)W(y)P(y) + A pLt(y)Wd(y)Pl(y),
1=1

n
{b(y)} = pTW(y)U(y) + A P1T(Y)Wd(y)Vy(y)'

1=1

where W(y) and Wd(y) are the diagonal matrix of weights wi(y) and wj(y)
respecively, P(y) = [PY(xi)]icl(Y) ,pO(y) = [D1(pY)(xj)]jEl(y) and U(y)

{UiliE-i(y), V(y) = {Vj~jaj(Y).
The previous properties remain valid for this new formulation. A similar

approximation method was proposed in [7] for dealing with boundary condi-
tions in a Galerkin method for partial differential equation.
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§3. Curvature Computation

Curvature is mainly used in the treatment of range images (see [1]), and most
algorithms were developed for these kind of data. In the paper [9], the authors
distinguished four types of algorithms: finite difference methods, the facet
model, geometrical methods, and fitting methods. The first two categories
only apply to depth maps, whereas the last two are more general.

As the geometrical methods are ad hoc contructions, we shall not exam-
ine them in this paper. The facet model described in [5] uses a polynomial
fit to compute more accurate finite difference formulas. The same idea was
used in [8] for generalized finite differences. Therefore, the last three meth-
ods are mainly of the same kind, and a diffuse model gives some theoretical
background to them.

Except for geometrical methods, curvature computation at nodes (i.e.
data points) is composed of four steps:

1) Extraction of the node neighborhood,

2) Calculation of a coordinate system in which the surface is a Monge patch
(i.e. there exists a function W such that the surface has the form (x, y, z =

(x, y))),

3) Evaluation of partial derivatives of the surface at the node,

4) Computation of curvatures.

The finite difference and facet model-based methods precompute some
steps to obtain faster estimates. A more extensive bibliography can be found
in [9] and [13].

Meshed surface curvature estimation can be done in one of the following
three ways:

1) Forget the mesh, and treat a 3D point set,

2) Use the mesh as a purely topological attribute,

3) Use the mesh to interpolate the data.

The paper [15] uses the second strategy: it applies a multiresolution
fitting method where the neighborhood of a node is defined through the tri-
angular mesh. " Different layers of connectivities define different levels of
neighboring relationships, e.g., the first level neighbors are the point with di-
rect connection with the node, the second level ones have direct connection
with the first level neighbors, and so on ". The third solution is difficult be-
cause it needs high continuity elements which are difficult to build; but [12]
shows a solution based on G2 continuity which is not robust to element shape
[13]. Our method is of the second kind.

§4. Diffuse Curvature Computation

The diffuse curvature computation uses both the point positions and some
normals (e.g. triangle normals in this paper). We focus on the computation
at the nodes only, which will help in the definition of the parameters of the
diffuse algorithm. The polynomial basis is (1, x, y, x 2 , XY, y 2) which allows the
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Fig. 1. Neighborhood selection.

evaluation of second-order partial derivatives needed for curvature computa-
tion.

We shall follow the four steps described above to compute curvature at a
node xi. Neighborhood extraction is based on the following weight functions:
wi is such that wi(xi) = 1, wi(xi,) = ½ if node xi, is connected to xi and
wi(xi,) = 0 otherwise. The weight function of a normal is defined with the
dashed triangulation (Figure 1, right). For smoothness reasons, we add the
gray nodes to evaluate curvature at nodes on the border with only three edges
(Figure 1, center).

We then compute local coordinates using an algorithm based on principal
component analysis, and estimate the partial derivatives of the Monge patch
(i.e. of function v) defined by the data points with the pseudo-derivatives of
the diffuse approximation at point xi. Finally, principal curvatures k, and k2
are computed with their associated directions.

A numerical study of the proposed method is given in [13], and shows that
it gives at least as good results as the fitting method with smaller dependence
neighborhoods, which is an important factor for surface recognition. It shows,
moreover, that A has to be small.

§5. Surface Recognition

Surface recognition is the first step in reconstructing a CAD model from a
triangular mesh. We shall suppose in the following that the considered surface
satifies the following hypotheses:

Ho: The surface is composed of parts of planes, cylinders, spheres, cones and
torii (called patches).

Hj: Each patch contains at least one interior node.

H2: Patch intersection are contained in the mesh (i.e. they are described by
some edges chains).

Under these hypotheses, the above-mentioned diffuse curvature computation
always estimates the real surface curvature at nodes interior to a patch (H1
and 112), because data are taken from the right surface. This is not the case
with usual techniques (mainly the fitting method). This property is essential
to proving that the recognition algorithm correctly classifies each node of a
surface under the hypotheses HO, H, and H2 [14].
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The recognition algorithm is composed of four steps.
Firstly, an initial classification (based on hypothesis HO) is proposed with

the following rules applied sequentially:

"* If k, k2 = 0, the nodes is a PLANE node.

"• If k2 0 and k' = 1, the node is a SPHERE node.

"* If k2 # 0 and k 5 1, the node is a TORUS node.

The classification of non-classified nodes uses their comparison with connected
nodes:

"* If all connected nodes have the same k, and associated direction, the node
is a CYLINDER node.

"* If they have same k, and different directions, the node is a TORUS node.

"* The node is a CONE node otherwise.

Secondly, we check the consistency of the initial classification with hypotheses
H0 , H1 and H2 . For example, a cone-cylinder intersection node is classified
as a TORUS node. The basic idea of this consistency check is that classified
connected nodes must form some connected homogeneous sets (as a conse-
quence of 112). From the study of intersections between the five primitives, it
is possible to define three consistency rules (that are shown to be sufficient in
[14]):

"* For all connected nodes of different kinds: if one of them is a PLANE
node unclassify the other one, otherwise if one of them is a CYLINDER
node, unclassify the other one. Unclassify both nodes in other cases.

"* If two connected nodes are both TORUS nodes with different ki, unclas-
sify both nodes.

"* If two connected nodes are both SPHERE nodes with different k2, un-
classify both nodes.

At this stage, we obtain some germs that are homogeneous connected sets of
nodes. We shall grow these germs to classify the whole surface via a marching
algorithm.

Thirdly, we consider a classified node n and the patch P to which it
belongs. From hypothesis H2, for any triangle T = (n,m,p) we can claim
that

1) T and its edges nm and np belong to the interior of P,

2) Nodes m,p and edge mp belong to P.

Therefore, nodes m and p are either in the interior of the patch P or on
the intersection of P and another patch. This analysis forms the topological
operator of the marching algorithm.

The next step is then to check whether nodes m and p are interior nodes or
intersection nodes. This decision is based on two rules which use geometrical
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Fig. 2. (a) Initial classification (b) Consistent classification.

information. The first rule concerns connected triangles and their connecting
edge.

"* If one of the triangles is not classified, do nothing,.

"* If both triangles are of the same kind and a vertex of the common edge
belongs to an intersection, classify the other vertex as an intersection
node.

"* If the triangles are of a different kind, the vertices of the common edge
are intersection nodes.

The second rule is node-based. It looks at the classification of the con-
nected nodes: If this list is not homogeneous, then the node lies on an inter-
section. If it is homogeneous, some tests based on the same ideas as the initial
classification allow us to check whether the node belongs to a surface or to an
intersection of two surfaces of the same kind (this situation may happen after
some iterations of the marching algorithm). The iteration of the topological
operator and the two classification rules grows the germs of the consistent
initial classification.

Figure 2 shows that the initial consistency algorithm may kill all poten-
tial germs of some patches. Provided that hypothesis H1 is valid, some post

treatment can be applied to this situation. The basic ideas of these treatments
are the same as those being used in the main recognition algorithm. This is
the fourth and last step of the classification.

§6. Conclusion

Under the additional hypothesis that curvature computation is exact (113), the
recognition algorithm is successful i.e. If the Hypotheses Ho to H3 are valid,
the recognition algorithm classifies correctly all the nodes of a triangulated
surface. Triangles are classified except for those which are based on three
frontier nodes. These triangles can be classified in a subsequent model fitting
stage. The third hypothesis is restrictive, but numerical experiments showed
that the algorithm is succesfull as soon as the surface satisfies hypotheses H0 ,
HI and H2 .



Diffuse Curvature Computation 369

Fig. 3. Two real CAD meshed models.

Table 1 shows the relative number of correctly classified nodes after each
step of the algorithm. The first surface satisfies all three hypotheses H0 , H1
and H 2. The second surface does not satisfy hypotheses HO and H1 . As a
consequence, some nodes are not classified, and each unclassified node is link
to a hypothesis violation.

example 1 example 2

Initial classification 95 % 99.9 %

Consistency 87 % 80 %

Marching 98 % 88 %

Post treatment 100 % 88 %

Tab. 1. Relative number of classified nodes.

In conclusion, the use of the Hermite approximation scheme we proposed
in this paper allows us to build a simple but efficient recognition algorithm.
The numerical experiments showed that the Hermite Diffuse Approximation
is a powerful tool for surface analysis and partial derivatives estimation. The
curvature computation was also used in [11] in a remeshing scheme.

The quality of the curvature estimation on CAD models will help to en-
large the number of surfaces taken into account. Furthermore, [6] showed
that Moving Least Square approximation can be applied directly to surface
modeling. This approach may be useful for still better curvature estimation.
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